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This paper shows the ease of application and usefulness of mid-IR measurements for the investigation

of orthogonal cell states on the example of the analysis of Pichia pastoris cells. A rapid method for the

discrimination of entire yeast cells grown under carbon and nitrogen-limited conditions based on the

direct acquisition of mid-IR spectra and partial least squares discriminant analysis (PLS-DA) is

described. The obtained PLS-DA model was extensively validated employing two different validation

strategies: (i) statistical validation employing a method based on permutation testing and (ii) external

validation splitting the available data into two independent sub-sets. The Variable Importance in

Projection scores of the PLS-DA model provided deeper insight into the differences between the two

investigated states. Hence, we demonstrate the feasibility of a method which uses IR spectra from

intact cells that may be employed in a second step as an in-line tool in process development and

process control along Quality by Design principles.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

In the last decades, infrared (IR) spectroscopy has demon-
strated to be a useful tool for the analysis of microbiological
samples [1,2] as well as for biomedical diagnostics [3]. A vast
amount of molecules present in prokaryotic and eukaryotic cells
show typical spectral features in the mid-IR range. Concerning
yeast, FTIR spectroscopy has been used for the analysis of
genetically modified yeast strains [4], for the identification of
different strains by comparison of the FTIR spectra to library
data [5] and for the monitoring or investigation of yeast meta-
bolism [6–10]. Furthermore, FTIR spectroscopy was used for the
monitoring of a baker�s yeast fermentation process [11].

Due to the complexity of biological samples, spectra suffer
from a high grade of band-overlapping, especially in the finger-
print region, that complicates an exact band assignment and
consequently the signal interpretation. To enhance exploitation of
those information rich spectroscopic data, in many cases multi-
variate chemometric tools like for example principal component
ll rights reserved.
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analysis (PCA), cluster analysis (CA) and partial least squares (PLS)
regressions were used [1,3,12]. This leads to a broad field of
applications including the characterization of particular cell
compounds, the differentiation, classification and identification
of species and strains [1] as well as the detection of biomedical
relevant constituents such as DNA, RNA, proteins, carbohydrates
and lipids or even diseases [3]. As mentioned before, chemometric
tools are frequently used as an aid in interpreting the complexity of
the IR spectra of biological samples. Partial least squares-discrimi-
nant analysis (PLS-DA) is a supervised classification method based
on the use of a vector containing the class label for predicting the
class membership of objects [13]. In comparison to PCA, which is
frequently used as unsupervised classification method, PLS-DA is
still effective when the within group variation is greater than the
between group variation [14]. In the field of IR spectroscopy applied
to biological samples, PLS-DA has been used for the differentiation of
bacterial strains [15,16].

Several issues are of utmost importance when developing and
operating biotechnological fermentation processes. In the early
quantitative screening, strain performance needs to be differen-
tiated. Further on, limitations in nutrients are the main intended
design element in quantitative bioprocess development in
order to target a certain product for industrial biotechnology or



Table 1
List of the medium components, suppliers and concentrations.

Component (supplier) Concentration

Glycerol (Fluka) 30 g L�1

NH4Cl (Merck) 10 g L�1

KH2PO4 (Merck) 5.62 g L�1

MgSO4 �7H2O (Merck) 1.18 g L�1

EDTA �2H2O (Merck) 900 mg L�1

CaCl2 �2H2O (Merck) 110 mg L�1

FeCl3 �6H2O (Fluka) 75 mg L�1

MnSO4 �2H2O (Fluka) 28 mg L�1

ZnSO4 �7H2O (Fluka) 44 mg L�1

CuSO4 �5H2O (Loba) 8 mg L�1

CoCl2 �6H2O (Riedel de Haen) 8 mg L�1

Na2MoO4 �H2O (Merck) 5.2 mg L�1

H3BO3 (Merck) 8 mg L�1

KI (Loba) 1.2 mg L�1

Biotin (Sigma) 3.48 mg L�1

Antifoam Struktol J650 800 ml L�1
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biopharmaceutical use. Hence, the media has to be designed to
suit the metabolic needs also in high density fermentations
[17,18]. Finally the developed process needs to be controlled by
using easy and rapid analytical methods. All elements fit into the
initiative of Quality by Design (QbD), a system approach to design
a quality product based on scientific process understanding [19].
One suitable approach is to rapidly identify different physiological
states, such as how cells react to different fermentation condi-
tions to control the accumulation of the desired product or to
achieve optimum growth rates. Already in 1972 Künzi and
Fiechter investigated the carbohydrate composition of Saccharo-

myces cerevisiae under growth limitation [20]. Under glucose
limitation the synthesis of the storage carbohydrates glycogen
and trehalose increases when there is a surplus of nitrogen and all
other compounds in the medium. In the same way, cells accu-
mulate glycogen and trehalose in presence of exogenous carbon
and energy source when there is a lack of nitrogen in the medium.
The authors found out that under carbon-limitation almost the
same amount of storage carbohydrates is achieved as under
nitrogen-limiting conditions, whereas in the presence of an
excess of all substrates, the accumulation of reserve carbohy-
drates is low. In any case the content of structural carbohydrates
mannan and glucan shows little change. FTIR spectroscopy was
already used for the investigation of nutrient stress on cyano-
bacteria and bacillariophyceae [21] as well as on rhizobacterium
[22] by analyzing changes in IR spectral bands representing
typical components of biological samples in relation with the
growth conditions.

For the identification of physiological states, such as C-limita-
tion, N-limitation or C and N excess, mainly off-line methods
were employed which quantified primary metabolites using
primarily liquid chromatography, enzymatic or immunological
test methods [23]. In certain situations also on-line gas chroma-
tography [24] as well as in-line fiber optic [25] sensors were used
to quantify target analytes present in the fermentation broth.
Up to now, also the response of yeast cells to stress has been
deduced from the measurement of a set of metabolites [26],
which, while feasible, is inappropriate for the rapid detection of
the physiological state of cells. A different route for assessing
physiological states of cells and hence for stress detection would
be direct analysis of the biomass of cells. Using conventional
analysis techniques, this is usually a time consuming process, as
reproducible cell disruption is required prior to the analysis and
so, it is not convenient for an effective control of a production
process.

The long term objective of our research efforts is the develop-
ment of an easy IR based technique for the rapid identification of
physiological states in entire yeast (Pichia pastoris) cells, to
monitor the growth conditions of fermentation processes in-line
in order to achieve efficient production conditions avoiding stress.
In the work reported here, we aim to demonstrate the feasibility
for a rapid identification of two well defined orthogonal physio-
logical states using mid-IR spectra of whole cells, hence no cell
disruption is required. Simply, yeast was sampled, washed with
distilled water and dried on an IR transparent carrier prior to the
measurement by mid-IR transmission spectroscopy. A multivari-
ate PLS-DA model was developed to differentiate cells obtained
under carbon-limited and nitrogen-limited growth conditions.
Special emphasis was put on the validation of the PLS-DA model
to assure the accuracy of the obtained results, although only a
limited number of samples was available. The presented results
are a first step toward the development of an IR based non
invasive in-line sensor for process analytical applications along
QbD principles [27]. In turn, as a demonstration of feasibility, it is
not the aim of the contribution to physiologically interpret or
compare the results from the different samples.
2. Experimental

2.1. Fermentation process and sample preparation

In this study, yeast cells (Pichia Pastoris X-33, wild type strain)
withdrawn from a fermentation process were investigated. Cells
were grown at 30 1C during 24 h in a 100 mL Erlenmeyer flask
containing 20 mL of complex YPG (yeast extract, peptone and
glycerol) medium on a shaker at 250 rpm. The medium contained
20 g L�1 glycerol (Fluka, Buchs, Switzerland), 6 g L�1 yeast
extract (Merck, Darmstadt, Germany) and 5 g L�1 Bacto Peptone
(DIFCO, Lawrence, USA) and was autoclaved during 20 min at
120 1C. Subsequently, 50 mL of this preculture were inoculated in
an autoclavable 1 L Applikon fermenter containing 1 L of
medium prepared according to the Egli recipe [28] with minor
modifications. All components are listed in Table 1. During the
fermentation, pH was maintained constant at 5.0 by the addition
of 1 M KOH and the reactor was thermo-stated at 28 1C. To
homogenize the culture broth, it was agitated at a constant
agitation speed of 1200 rpm and the aeration was kept constant
at 1.25 L min�1 using a Mass Flow Controller (AALBORG, Orange-
burg, USA). The dissolved oxygen level (dO2) was monitored with
a dO2 probe (Hamilton, Bonaduz, Switzerland) and was main-
tained always higher than 30% in order to avoid oxygen limitation
in the liquid phase. The fermenter was run in batch mode. The
media was designed in such a way, that the batch culture during
its exponential growth phase ran into a nitrogen limitation, before
the carbon source was depleted. Hence, during the latter phase 4
N-limited samples were withdrawn. Subsequently the culture
was switched to continuous mode performed at a constant
dilution rate of 0.15 h�1. This chemostat culture was set up with
two identical feeds according to Table 1, except that one feed did
not contain any nitrogen. The ratio between the two feeds was
adjusted in such a way that the culture could be driven on
purpose into carbon as well as nitrogen limitation. During
this culture, 6 carbon-limited (C-limited) and 3 nitrogen-limited
(N-limited) samples from different steady states were obtained.

Samples of a volume of 2 mL were taken in different time steps
as described. Prior to the IR measurements, yeast cells were
washed three times with 500 mL of de-ionized water centrifuging
for 5 min at 7500 rpm. After the washing step, the cell suspension
was conveniently diluted with de-ionized water to subsequently
achieve appropriate sample thicknesses for IR measurements.
As no quantification was carried out, the sample thickness is
not critical in this procedure.
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2.2. FTIR measurements

Absorbance spectra of the yeast cells were obtained using the
20x microscope objective fitted to a Hyperion 3000 interfaced with
a Tensor 37 FTIR spectrometer, from Bruker Optics (Ettlingen,
Germany), in transmission mode. For spectra acquisition, the
microscope was operated in single point mode using a liquid N2

cooled mercury cadmium telluride detector. Spectra were recorded
between 4000 and 600 cm�1 by co-adding 32 scans with an optical
resolution of 4 cm�1 and a zero filling factor of 2 operating the
scanner of the interferometer at a HeNe laser modulation fre-
quency of 20 kHz. OPUS software (version 6.5) was used for
instrument control and data acquisition.

From each sample, three spots of 2 mL of cell suspension were
pipetted onto a ZnSe window (53�38 mm) and placed in the dry
air purged sample compartment of the microscope. The measure-
ment was started when the water content in the spectra had
reached a constant level. Spectra were collected at multiple
positions from each sample spot. A background spectrum was
recorded at a clean spot of the ZnSe window. Spectra of each spot
were averaged in order to obtain one mean spectrum per sample
spot. In total, 18 C-limited and 21 N-limited sample spots,
corresponding to 6 C-limited and 7 N-limited samples, were
analyzed.

2.3. Data analysis

Data analysis was carried out using Matlab 7.7.0 (Mathworks
Inc., Natick, MA, USA). PCA and PLS-DA model calculations, cross
validation and predictions were performed using Matlab func-
tions included in PLS Toolbox 6.2.1 (Eigenvector Research Inc.,
Wenatchee, WA, USA) as well as in-house written functions.

For the calculation of PCA and PLS-DA models, the wavenum-
ber region between 1778 and 847 cm�1 was used, corresponding
to 484 variables employing an optical resolution of 4 cm�1 and a
zero-filling factor of 2. The data set was split into two sub-sets, a
calibration data set consisting of 9 samples (4 C-limited and
5 N-limited samples) and an external validation set containing
4 samples (2 C-limited and 2 N-limited samples) with three
replicates each, resulting in a total of 27 and 12 spectra, respec-
tively. Initially the calculation of second derivative row vectors
resulting from a 9 point cubic Savitzky–Golay function was
performed as pre-processing step for the calculation of PCA and
PLS-DA models followed by normalization to the sum of the
absolute value of all variables in the considered region for a
given sample (i.e., spectrum), returning a vector with unit area
(area¼1) under the curve. This normalization step is necessary to
compensate differences in the absorbance intensity due to varia-
tions in sample thickness. Normalization was followed by mean
centering.

For the assessment of the predictive capabilities of the calibra-
tion model, two types of model validation were carried out: (i)
double cross validation (2CV) and (ii) external validation. 2CV of
the PLS-DA model was carried out using the calibration data set.
Permutation testing was used to evaluate the statistical signifi-
cance of selected predictive quality parameters. In the outer loop
of the 2CV approach, the 9 samples included in the dataset were
split into a ‘calibration’ subset and a ‘test’ sample. The split was
done on biological sample basis, i.e., all three replicates of each
biological sample were included either in the calibration or in the
test set. In the inner loop of the 2CV for each ‘calibration’ subset a
leave-one sample-out CV was used to obtain the optimal number
of PLS latent variables (LVs) corresponding to the maximum
predicted squared correlation coefficient (Q2) value with a max-
imum number of LV¼5. Again, all three replicates of each
biological sample were included or removed from the data subset.
A PLS model using the ‘calibration’ set and the determined
number of LVs was calculated and applied for class prediction of
the ‘test’ sample. The whole procedure was repeated until all
samples had been included once in the ‘test’ set. The statistical
significance of the obtained class separations was assessed
comparing quality parameters (number of misclassifications, the
Q2 and area under the receiver operating characteristic curve
(AUROC) values) calculated using real class assignments to the
distributions of the quality parameters obtained from re-estima-
tions after class randomization repeated 5000 times. The Q2

statistic is defined as one minus the ratio of the prediction error
sum of squares over the total sum of squares of the response
vector. It is used as a measure for class prediction ability
frequently employed to validate discrimination models [29] and
shows ideally a value close to 1. The AUROC is 1 for perfect class
separations and close to 0.5 if there is no separation [29,30].

Furthermore, an external validation dataset was used for
testing the performance of PLS-DA models. Cross validation was
carried out on biological sample basis employing contiguous sub-
sets with 8 data splits. The optimum number of latent variables to
be included in the PLS-DA model was chosen based on the
misclassification rate of the calibration dataset. For a straightfor-
ward interpretation of the PLS-DA model, Variable Importance in
Projection (VIP) scores were used. Their calculation is based on
estimating the importance of each variable in the projection used
in a PLS model: a variable with a VIP score higher than one can be
considered important in a given model. The advantage of the
use of VIP scores over the use of the regression vector is that
spectral regions with a high contribution to the model are
easily identified even though derivatives were calculated in the
pre-processing step.

For PCA model calculation the calibration set was used con-
sisting of 9 samples. Again, cross validation was carried out
employing contiguous sub-sets with 8 data splits. The Hotelling
T2 statistic and the Q residuals are frequently used to detect
outliers in data sets. The Hotelling T2 statistic is the sum of
normalized squared scores and is therefore a measure of the
variation in each sample within the PCA model, or, in other words,
it is a measure of the distance from the multivariate mean to the
projection of the sample onto the k principal components. The Q

residual is the sum of squares of each sample in the error matrix
and therefore it is a measure of the difference, or residual,
between a sample and its projection into the k principal compo-
nents used to build up the model. It indicates how well each
sample conforms to the PCA model [31]. The optimum values
of the Hotelling T2 value and the Q residuals are 100 and 0%,
respectively.
3. Results and discussion

3.1. Mid-IR spectra of entire yeast cells

Fig. 1a shows mean mid-IR absorbance spectra of C-limited
and N-limited samples of the calibration and validation set in the
region between 1800 and 850 cm�1. Fig. 1b shows 2nd derivative
spectra from the spectra depicted in Fig. 1a after normalization.

Basically, in the depicted region the main spectral contribu-
tions are derived from proteins, showing the very intense and
broad Amide I band around 1660 cm�1 and the Amide II band
around 1540 cm�1. The region between 1250 and 950 cm�1 is
dominated by the intense absorption of carbohydrates with a
minor contribution of phosphate bands from DNA, RNA and
phospholipids. Additionally, proteins, lipids and storage carbohy-
drates show strongly overlapping, but less intense bands in the
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Table 2
Positions an assignment of the main absorption bands observed in the region between 1800 and 850 cm�1.

IR band position [cm�1] Assignments

N limited C limited

1743 1743 C¼O stretching vibrations in lipid esters [7]

1657 1657 Amide I: mainly C¼O stretching vibrations and contributions of N–H bending vibrations [4]

1539 1541 Amide II: mainly C–N stretching vibrations and N–H bending vibrations [4]

1454 1454 Various CH2/CH3 bending vibrations in lipids and proteins [7]

1379 1383 C¼O of COO� symmetric stretching vibrations in proteins, CH2 wagging vibrations in lipids and b(1–3) glucans [7]

1308 1306 Amide III: C–N and C–O stretching vibrations, N–H and O¼C–N bending vibrations [7]

1246 1246 PO2� asymmetric stretching vibrations in DNA, RNA and phospholipids [7]

1151 1151 b(1–3) glucans [4], C–O, C–OH carbohydrates, various contributions [7]

1078 1078 b(1–3) glucans [4], nucleic acids and glycogen [33], PO2� symmetric stretching vibrations mainly from RNA [7]

1045 1047 Glycogen and mannans [33]

Note: Refs. [4,7]: ATR-FTIR spectra obtained from the measurement of Saccharomyces cerevisiae; Ref. [33]: FTIR transmission spectra of Candida albicans.
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region from 1500 to 1250 cm�1. For a detailed description of the
observed bands the reader is referred to Table 2 [4,7,32].

From Fig. 1a and b it can be appreciated that spectra of
N-limited and C-limited samples show a very high similarity
and no significant band shifts were observed. A slight change in
the absorbance ratio at 1078 and 1045 cm�1 between the mean
spectra of both classes could be identified. It is also remarkable,
that the calibration and validation sets, which were subsequently
employed for external validation of the calculated PLS-DA model,
show similar spectral features.

3.2. Data exploration using PCA

A PCA model was built from the calibration set using 6 PCs
explaining together 90.69% of the variance in the data after
applying the pre-processing described in the experimental section
(2nd derivative, normalization, and mean centering). In Fig. 2a
and b, two obtained scores plots are depicted. It can be appre-
ciated that the PC1 vs. PC2 scores plot, although representing the
main part of the data variance (52.76 and 15.75%, respectively),
does not show class separation between the two groups. On the
contrary, the PC2 vs. PC3 scores plot (explaining 8.35 of the
variance) is useful for differentiation between cells grown under C
and N-limiting conditions. However, these PCs do not contain
sufficient information to achieve complete class separation.
Employing even higher PCs (data not shown), explaining only a
minor part of the variance in the studied data, class separation
between yeast samples grown under N and C-limiting conditions
could not be achieved.

The data obtained in this study contains complex IR spectral
information with several different sources of variation (e.g.,
growth rate, availability of nutrients (N-limited and C-limited
growth), batch mode and continuous mode etc.). Due to this, PCA,
which is frequently used as unsupervised classification method,
might not be powerful enough to achieve class separation, as it is
not effective anymore when the within group variation is greater
than the between group variation [14]. In situations like this, the
use of supervised classification methods, such as PLS-DA has to be
considered.

PCA is frequently used to explore data sets in order to detect
outliers prior to the calculation of PLS models or the application of
other chemometric techniques. From the scores plot in Fig. 2a and
b, it can be observed that none of the samples falls outside the
99% confidence limit (blue dashed line). In Fig. 2c the Hotelling
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T2 values are plotted versus the Q residuals. For the present data
set, it can be observed that all the samples fall within the 99%
confidence limits and no outliers were identified.
3.3. Classification employing PLS-DA

As no significant changes in band positions or shape extracted
from the mean spectra of cells grown under C and N limiting
conditions were observed, a classification using the information
on a single band shift resulted in high classification errors
(data not shown). Therefore, the use of a multivariate approach
as PLS-DA was necessary.

To quantify the predictive abilities of a PLS-DA model, the Q2,
the AUROC and the number of misclassifications are usually
employed. Whereas these parameters vary between standardized
ranges there are no threshold values which can be used to define
a classification between two groups as ‘good’ or ‘acceptable’ [29].
Additionally, PLS-DA is known to tend to overfit data, being able
to achieve clear class separations in the score plots even from
unstructured data. This aspect is of special relevance when the
number of samples is limited, as sample size affects the stability
of the obtained quality parameters [33]. Nevertheless, the
required size depends on a series of factors such as for example
the within- and between-class variance, instrument stability and
sample treatment. Therefore a rigorous validation of the results is
of great importance. External validation can be seen as the ‘gold
standard’, provided that the validation set spans the whole
calibration space [34], and 2CV is an approximation to an external
validation [35,36]. It is relevant that 2CV figures of merit can be
considered as external, as samples used for test the model are not
used during model calculation, scaling or LV selection steps, and
therefore, model over-fitting is avoided [37,38].

To assess the lack of model over-fit, the obtained PLS model
has been validated following two strategies: (i) permutation
testing for the assessment of 2CV results; and (ii) the use of an
external validation set. Prior to the calculation of all PLS-DA
models, the pre-processing described in the experimental section
(2nd derivative, normalization and mean centering) was applied
to the spectra.
3.3.1. Double cross validation and permutation testing

Westerhuis et al. [29] developed a strategy based on repeatedly
permuting the class labels to enable efficient assessment of cross-
validation results. In order to avoid overoptimistic results, this
approach was applied to assess the validity of a PLS-DA classification
model of C- and N-limited samples. The aforementioned PLS-DA
model performance parameters obtained using real class labels were
compared to a reference distribution of the same parameters
corresponding to random class assignments which was built under
the H0 hypothesis that no difference exists between the two classes,
as described in the experimental section. The non-parametric
permutation test for the calculation of the statistical significance
of the three 2CV PLS-DA figures of merit (i.e., Q2, AUROC and the
number of misclassifications) assess the lack of model over-fitting as
shown in [35].

Fig. 3a shows the histograms of the obtained mean number of
misclassifications (blue bars) using permutated class labels and
the value obtained using the correct class assignments (red
asterisk). As it can be seen, considering the number of samples
included in the calibration set (n¼9, with three replicates each,
27 data points), the number of misclassifications using real class
labels is low (4 objects) compared to the mode of misclassifica-
tions obtained from the permutation test (15 objects). A p-value
of 0.035 was obtained, indicating an acceptable separation
between the distribution obtained from the permuted class
labels and the number of misclassifications obtained from real
class labels. Fig. 3b shows the Q2 values. Whereas the Q2 value
obtained for real class labels is 0.396, most of the permutated
data provided negative Q2 values with a median of �0.664. In
this case, the obtained p-value was 0.036. Finally, the AUROC
value obtained for real class labels is 0.896, being close to the
optimum value of 1. In addition, the median of the AUROC values
obtained using random class memberships was 0.422 and a
p-value of 0.0202 indicated an acceptable difference between
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the AUROC values obtained from real and permuted class labels
(see Fig. 3c).

Fig. 3d shows the predicted class values obtained during
double cross-validation in which, as aforementioned, four data
points were assigned to the wrong class. This leads to the
conclusion that the PLS-DA model is adequate for the classifica-
tion of N-limited and C-limited yeasts using their mid-IR spectra.
3.3.2. External validation

Using the calibration (n¼9, 27 data points) and validation
(n¼4, 12 data points) sets described in the experimental section,
a PLS-DA model was calculated and validated. Fig. 4a shows the
class prediction obtained for all data points included in the
calibration and validation sets. On the left side of the graph
results obtained for the calibration set are shown whereas
samples depicted on the right side pertain to the independent
validation set. The model was calculated using 4 latent variables.
The selection was based on the misclassification rate of the data
points included in the calibration set. It can be seen that the
class prediction is satisfactory not only for the calibration data,
but also for data from the external validation set as C-limited and
N-limited samples can be classified correctly (only one sample of
the external validation set was assigned to the wrong class).
Fig. 4b shows the Hotelling T2 values versus the Q residuals,
obtained for the PLS-DA model. It can be seen that only three
objects (i.e., sample replicates) are located slightly outside the
99% confidence limit.

The VIP scores are depicted in Fig. 4c. The magnitudes of the
VIP scores can be employed to detect variables that influence
mostly on the model [13]. Accordingly, the most relevant
variables were observed around 1745 and 1554 cm�1, corre-
sponding to the C¼O stretching vibrations in lipid esters and the
amide II region, respectively. In addition, also variables around
1022, from 1086 to 1068 and around 1146 cm�1 corresponding
mainly to storage carbohydrates (glucans, glycogen and man-
nan) as well as to the PO2� symmetric stretching vibrations
(mainly from RNA) have a strong impact on the model. This is in
good agreement with the change in absorbance ratio observed in
the mean class spectra as described before. Furthermore vari-
ables located around 1632, 1703 and 1657 cm�1 contribute
strongly to the model, corresponding to changes in the amide I
band. Several other regions also show minor contributions to the
VIP scores. In summary it can be said that many different
variables in different spectral regions affect the model which
reinforces the use of a multivariate model for the classification of
spectra of entire yeast cells between cells grown under N and
C-limiting conditions.
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4. Conclusions

The experiments carried out in this study demonstrate that the
information contained in mid-IR spectra of entire P. pastoris cells
is suitable for the differentiation between cells grown under
nitrogen and carbon limiting conditions. The measurement pro-
cedure is fast as the cells only have to be rinsed with water prior
to their analysis thus avoiding problems resulting from irrepro-
ducible and labor-intense cell disruption.
Due to the complexity of the investigated system which is
reflected in a high amount of overlapping mid-IR bands, it is not
possible to differentiate between the two groups without the use
of multivariate chemometric tools. To overcome this problem and
to establish an automatic process, a PLS-DA model that enables
the classification of samples according to the two investigated
states (C-limited and N-limited growth) has been developed.
Having a closer look on the VIP scores enhances the under-
standing of the compositional differences between samples from
both classes. In order to ensure the accuracy of the obtained
results and to prevent wrong conclusions due to over-fitting, the
obtained model has been deeply validated.

The results presented in this paper demonstrate the feasibility
of the method as a first step towards an IR based non-invasive
in-line sensor for the monitoring of the physiological state of yeast
cells in fermentation processes as a central element in early
quantitative screening of strains, media development and develop-
ment of a control strategy along QbD principles.
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